起名问题
   育儿问题
   家庭教育
   起名问题
   宝宝疾病

   相关栏目
 你会和你爱的人过一生还是...
 第一次追女孩怎么追
 女孩真的不懂?
 刘霏,我们真的可以回到以...
 爱一个人真的会一生不变吗...
 ????看看你的名字代表什么...
 人的一生会有几个转折点?
 你喜欢什么样的女孩;男孩...
 当你快死的时候你回想起谁...
 人真的可以厮守一生么?
 中国最大的姓是哪个啊
 男孩与女孩?

 您现在的位置: 休闲宝贝网 >> 育儿FAQ >> 起名问题 >> 

起名问题 恒星的一生是怎样的
  人气: 【字体:
  发布时间:2008-04-22 10:25:58

  >>>>>>>>提问

恒星的一生是怎样的???


休 闲 宝 贝 网



>>>>>>>>休闲宝贝网回答:


恒星通常是在星际气体中诞生的。在宇宙中,当星际气体的密度增加到一定程度时,由于其内部引力的增长大于气体压力的增长,这团气体云就开始收缩。这样的倾向一开始,其自身引力使巨量物质的密度普遍增大。巨大质量的星际物质开始变得不稳定。这些巨量的星际气体与尘埃坍缩进行得越来越迅猛,开始分裂形成较小的云团,密度也增大了许多。这些较小的云团最终将各自成为一颗恒星。由于星际物质的质量通常非常巨大,通常在太阳的一万倍以上,所以恒星总是一下子一大批地降生。

  如果有一团星际气体超过通常的星际物质(每立方厘米一个氢原子)的密度,达到每立方厘米已达六万个氢原子。开始时这团气体是透光的,发出的光热辐射不受周围物质的牵制,畅行无阻地传到外面。物质以自由落体的形式落到中心,在中心区积聚起来。本来质量均匀分布的一团物质,变成了越往里密度越大的气体球。随着密度的增大,中心附近的重力加速度越来越大,内部区域物质的运动速度的增长表现得最为突出。开始几乎所有的氢以分子的形式存在,气体的温度也很低,总不见升高,这是因为它仍然过于稀薄,一切辐射都能往外穿透,溃缩着的气体球受到的加热作用并不显著。经历几十万年后,中心区的密度逐渐变大,在那里,气体对于辐射来说变得不透明了。这时核心便开始升温,随着温度的上升,压力开始变大,坍缩逐渐停止。这个特密中心区的半径通常和木星轨道半径相近,而它所含的质量只及整个坍缩过程中涉及的全部物质的5%。物质不断落到内部的小核上,它带来的能量在物质撞击到核心上时又成为辐射而放出。与此同时,核心在不断缩小,并变得越来越热。

  温度达到二千度左右时,氢分子开始分解成为原子。核心开始再度收缩,收缩时释放出的能量将把所有氢分子都分解为原子。这个新生的核心比今天的太阳稍大一些,不断向中心落下的外围物质最终都要落到这个核心上,一颗质量和太阳一样的恒星就要诞生了。

  人们将这样的天体称为“原恒星”,它的辐射消耗主要由下落到它上面的物质的能量来补充。由于密度和温度在升高,原子渐渐地丢失了它们的外层电子。落下的气体和尘埃形成了厚厚的外壳,使光无法穿透。直至越来越多的下落物质和核心联成一体时,外壳才透光,发光的星体突然露出来。其余的云团物质还在不断向它落下,密度还在不断增大,内部温度也在上升。直至中心温度达到一千万度发生聚变。一颗原始的恒星诞生了。

  在反抗引力的持久斗争中,恒星的主要武器是核能。它的核心就是一颗大核弹,在那里不断地爆炸。正是因为这种核动力能自我调节得几乎精确地与引力平衡,恒星才能在长达数十亿年的时间里保持稳定。

  热核反应发生在极高温度的原子核之间,因而涉及物质的基本结构。在太阳这样的恒星中心,温度达到一千五百万开氏度,压强则为地球大气压的三千亿倍。在这样的条件下,不仅原子失去了所有电子而只剩下核,而且原子核的运动速度也是如此之高,以至于能够克服电排斥力而结合起来,这就是核聚变。

  恒星是在氢分子云的中心产生的,因而主要由氢组成。氢是最简单的化学元素,它的原子核就是一个带正电荷的质子,还有一个带负电荷的电子绕核旋转。恒星内部的温度高到使所有电子都与质子分离,而质子就像气体中的分子在所有方向上运动。由于同种电荷互相排斥,质子就被一种电“盔甲”保护着,从而与其他质子保持距离。但是,在年轻恒星核心的一千五百万开氏度的高温下,质子运动得如此之快,以至于当它们相互碰撞时就能够冲破“盔甲”而粘合在一起,而不是像橡皮球那样再弹开。

  四个质子聚合,就成为一个氦核。氦是宇宙中第二位最丰富的元素。氦核的质量小于它赖以形成的四个质子质量之和。这个质量差只是总质量的千分之七不能就无限制地继续,反应的洪流最后都朝着一个元素汇集:铁。铁是大质量恒星核心的最后灰烬。与此同时恒星还不断地膨胀其外壳以调节平衡,它会膨胀到一个异常巨大的尺度,成为红超巨星。红超巨星是宇宙中最大的恒星。如果把这样一个星放在太阳系中心,它将吞没包括远在五十亿公里外的冥王星在内的所有行星。

  虽然铁核的温度在十亿度以上,却没有能量从中流出。它不足以使超巨星维持引力平衡,铁核就会被压得更紧密,使其中的电子处于简并态。当简并电子的巨大压力能暂时地支持外层的重量时,恒星活动会出现一个间歇。但是当核心里铁和简并电子的质量超过一点四个太阳质量时,电子已简并的核突然塌陷,剧烈收缩,在十分之一秒内温度猛升到五十亿度。涌出的光子带有的巨大能量将铁原子核炸开,蜕变成氦原子核。这个过程叫光致蜕变。光致蜕变使原子核破裂并吸收能量,恒星核心的平衡发生了前所未有的急剧变化,越来越不能抵挡无情的重压,温度持续上升,直到氦核本身也蜕变为其基本成分:质子、中子和电子。在高温下电子变得更不能阻挡压缩力,在零点一秒内,它们被挤压到与质子结合在一起。二者的电荷相中和,变成为中子,同时迸发出巨大的中微子流。中子的“占据体积”要小得多,两个中子之间的间隔,可以小到十的负十三次方厘米,也就是说,中子可以相互碰到。于是,中子化就伴随有一场物质的内向爆炸和密度朝着简并态的巨大增长。恒星的密度达到每立方厘米十的十四次方克,相当于在一只缝纫顶针里有一亿吨的质量。恒星核里再没有任何“真空”留下,恒星核就成了一种主要由中子组成的巨大原子核,这种远比白矮星紧密的新的物质简并态,就叫做中子星。

  在某些质量远大于太阳的恒星的已简并的核心,继续发生着坍缩,但最终形成的并不是中子星,而是黑洞。

  没有东西能从黑洞逃逸,包括光线在内。黑洞可从大质量恒星的死亡中产生。一颗大质量恒星坍缩后,当其引力大得无任何其他排斥力能与之相对抗时,恒星被压成了一个称为“奇点”的孤立点。有关黑洞结构的细节可用爱因斯坦解释引力使空间弯曲和时钟变慢的广义相对论来计算。奇点是黑洞的中心,在它周围引力极强。黑洞的表面通常称为视界,或叫事件地平(Event Horizon)、“静止球状黑洞的史瓦西半径”,它是那些能够和遥远事件相通的时空事件和那些因信号被强引力场捕获而不能传出去的时空事件之间的边界。在事件地平之下,逃逸速度大于光速。这是一种人类尚未得到直接观察证实的天体现象,但它已被一些著名的理论天文学家如霍金等在数学模型方面研究得相当完善

≡ 查看、发表评论 ≡